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Abstract—An enolate-like intermediate A derived from 1,2-dioxo-3-isopropyloxy-4-methyl-3-cyclobutene (6) has proven to be a
novel nucleophilic synthon for an aldol condensation reaction with an arylaldehyde to give a variety of 4-hydroxy-2,3-dioxocy-
clobut-1-enyl group (Sq group)-containing cinnamic acid derivatives. © 2002 Elsevier Science Ltd. All rights reserved.

The 4-hydroxy-2,3-dioxocyclobut-1-enyl group (squaryl
(Sq) group), has attracted much attention as an isostere
of carboxylic acid and phospholic acid in medicinal
chemistry,1 a novel chromophore for developing
organic optical materials,2 and a synthon of quinones,3

triquinanes,4 cyclopentenone,5 and furanones5a–f in
organic synthesis. In order to extend the utility of
squaric acid which possesses intriguing physicochemical
properties such as strong acidity, chelating ability to
metal ions, and aromaticity, the carbon–carbon bond-
forming reaction to squaric acid becomes an important
subject in the above mentioned area. A typical method
to prepare Sq-containing molecules 2 in which the Sq
moiety was connected with a carbon–carbon bond was
based on the nucleophilic addition of alkyllithium or
Grignard reagent to dialkyl squarate 1 (route A,
Scheme 1).6 Route A is a practical and convenient
method for this purpose while the strong nucleophilicity
of organometallics was occasionally incompatible with
other unstable functional groups. To this problem, we
and other groups have demonstrated efficient methods
which involve an addition reaction of allylsi-
lane,4d,5c,5d,5f,7 silylenol ether,4b,5c,5d,7 ester enolate,1c,5f

organozinc reagent,8 or Wittig reagent,9 and transition
metal-catalyzed cross-coupling reactions.10 Comple-
mentary methods to route A for the preparation of a
variety of Sq-containing molecule 2 are still sought.

Since the Sq group possesses a potent electron-with-
drawing property, we envisioned that an enolate-like
intermediate A derived from 3 would perform as a
nucleophilic synthon which reacts with an electrophile
to give 2 under mild reaction conditions (route B). We
herein report generation of the enolate A in an aprotic
media and its aldol condensation with aromatic alde-
hydes to afford novel Sq-containing cinnamic acid
analogs whose carboxyl group is replaced by a strongly
acidic Sq group. Although an example to form the
enolate has been demonstrated by deuteration of 4 with
NaOD in D2O (Scheme 2) in 1970,11 its synthetic
application to carbon–carbon bond forming reaction
has not been reported to date. We initially examined
the enolate formation 7 from methylcyclobutenedione
66d in THF using several bases (Table 1). Treatment of
6 with LDA at −78°C in THF followed by quenching
with excess amounts of AcOD gave mono-deuterated
compound 8 in 57% yield with 55% d-incorporation.

Scheme 1.
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Scheme 2.

suggest that a retro-aldol process from 11 to 6 via
alkoxide 13 would predominate under these conditions.
In order to prevent the reversible equilibrium, we
attempted to trap the putative intermediate 13 with an
electrophile. Addition of a small amount of H2O in the
reaction gave a trace amount of the desired adduct 11
(2%) (entry 3), suggesting that certain equilibrium exists
between 7 and 13 while the yield was only 2%. We
considered that dehydration of 11 or trapping the
alkoxide 13 with an electrophile would improve the
yield. Thus, addition of Ac2O into the reaction condi-
tion was found to provide �,�-unsaturated olefin 1212 in
17% yield. Presumably, the reaction proceeded through
acetylation of 13 and subsequent �-elimination of acetic
acid from the resulting 14 (not isolated) gave 12 (entry
4). After several attempts to increase the yield, the
unsaturated olefin 12 was obtained in 36% upon treat-
ment with Ac2O and Et3N without any solvent (entry
5).13

A variety of aldehydes 16a–h were condensed with 6 or
15 to give E-squaryl styrene derivatives 12, 17b–h, 18a,
18c, and 18e in a range of 16–76% yields (Scheme 5,
Table 3).15,16 Similarly, the reaction of butylcy-
clobutenone 157c with 16a or 16e afforded E-trisubsti-
tuted olefin 18a or 18e in good yield, respectively
(entries 9 and 11). The presence of a methoxy group on
the aromatic ring led to lower yields of 17b and 18c
(entries 2 and 10). The isopropyl group of these adducts
was removed smoothly by treatment with 12N HCl in
dioxane to give the corresponding Sq-containing cin-
namic acid derivatives in quantitative yields. The pKa

value of the squaryl group is estimated to be less than
0 which is much stronger acidity than that of cinnamic
acid.17

In conclusion, the generation of enolate 7 derived from
3 in aprotic media is reported for the first time and its
synthetic utility has been demonstrated as an aldol
condensation reaction with various aromatic aldehydes.
The present method provides a facile entry to prepare a
novel class of cinnamate derivatives whose pKa value is
�0 and conjugate system is extended (UV �max=350
nm).18 Preliminary bioassays indicated that 17b and 17h
exhibited antibacterial activities against Rhizoctonia
solan at micro mole level.19 Further studies regarding

Table 1. Trapping of enolate 8 with D2O or i-Pr3SiCl

Entry Products (yield,Conditions (equiv.)
d-incorporation)

LDA (1), THF, −78 to 20°C1 8 (57%, 55%)
1 h, then AcOD (13), D2O
(43), −78 to 0°C, 1 h

9 (87%, 89%)2 Et3N (1), D2O (15), THF, 0°C,
1.5 h
LDA (1.05), THF, −78 to3 10 (�90%)
20°C, 1 h, then TIPSCl (1),
−78 to 20°C, 3 h

The incorporation took place when 6 was subjected to
triethylamine and D2O to give tri-deuterated 9 (>90%
d-incorporation). Moreover, lithium enolate 7 was
trapped with TIPSCl to afford novel silyl enolate 10 in
90% yield. These results confirmed the presence of the
conjugated enolate 7 in organic solvent (Scheme 3).

Having the enolate 7 in hand, we next examined its
reaction with benzaldehyde (Scheme 4, Table 2). Initial
treatment of 6 with LDA in THF and subsequent
addition of benzaldehyde at −20°C did not give any
aldol product and the starting material 6 was recovered
(entry 1). Switching the base to triethylamine provided
the same result as entry 1 (entry 2). These results

Scheme 3.
Table 2. Optimization of the condensation reaction

ResultsConditions (equiv.)Entry
(yield, %)

1 6 (34)LDA (1), THF, −78 to 20°C, 1 h,
then PhCHO (1), −78 to −20°C,
2.5 h

2 6 (64)Et3N (1.05), PhCHO (1), THF, rt,
24 h

11 (2), 6 (77)Et3N (1.05), PhCHO (1), few drops3
of H2O, THF, rt, 5 h

4 12 (17), 6 (26)Et3N (1.05), PhCHO (1), Ac2O (1.05),
THF, 0°C to reflux, 16 h

12 (36)5 Et3N (5), Ac2O (1.5), PhCHO (10),
neat, rt, 5 days

Scheme 4.
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Scheme 5.

Table 3. Condensation of 6 or 15 and 16a–h

Aldehyde Time (days)Entry ProductSubstrate Yield (%)

16a 61 126 36
2 6 16b 5 17b 32

16c3 56 17c 42
16d 56 17d4 45

65 16e 5 17e 43
16f 16 17f6 46
16g 126 17g7 40

68 16h 7 17h 37
16a 6 18a9 7615
16c 615 18c10 15
16e 6 18e11 5815

biological significance of the synthetic compounds are
currently investigated in our laboratories.
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